Tuesday, October 6, 2015
Session

Potential Solutions to Semiconductor Industry’s Challenges

13:45 Introduction
13:50
MOFs as Low-k Candidates for Future Technology Nodes
  Christof Wöll, Director, KIT
MOFs as Low-k Candidates for Future Technology Nodes
Christof Wöll

Christof Wöll
Director
KIT

Abstract
Materials with good mechanical properties and low k dielectric constants are of paramount interest for the next generation of electronics, since for the needed increases in clock frequency low-k materials are a crucial ingredient. It is very difficult to achieve dielectric constants below k = 2 with conventional polymers. Here, we focus on a novel, highly tunable class of materials, metal-organic frameworks (MOFs). MOFs are highly porous hybrid materials consisting of organic linkers connected to inorganic metal (or metal/oxo) clusters. Due to their crystalline, highly ordered, and porous structures, MOFs exhibits a number of highly interesting properties. The Young's modulus of a particular MOF, HKUST-1, amounts to 9.3 GPa[1] Because of the very low mass density of MOFs, the static dielectric constants k is very small and can drop to values far below 2.[3] We have introduced a novel method to grow SURMOFs, thin films of this exciting new class of porous solids, by liquid phase epitaxy (LPE) [2]. The solid state elastic and mechanical properties of SURMOFs, as well as their optical, electrical and electrochemical [4] properties have been investigated.[5] In addition, they are suited for photolithography [6]. References [1] S. Bundschuh, O. Kraft, H.K. Arslan, H. Gliemann, P.G. Weidler, C. Wöll, Appl. Phys. Lett. 101, 101910 (2012) [2] O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, Ch. Wöll, J. Am. Chem. Soc. 129, 15118 (2007). [3] E.Redel, Z. Wang, S.Walheim, J.Liu, H.Gliemann, Ch.Wöll, Appl. Phys. Lett., 103, 091903 (2013) [4] V. Mugnaini, M. Tsotsalas, F. Bebensee, S. Grosjean, A. Shahnas, S. Bräse, J. Lahann, M. Buck, C. Wöll, Chem. Comm., 50, 11129 (2014) [5] H. Gliemann, Ch. Wöll, Materials Today, 15, 110 (2012) [6] S. Grosjean, D. Wagner, W. Guo, Z.-G. Gu, L. Heinke, H. Gliemann, S. Bräse, Ch. Wöll, Chem.Nano.Mat., DOI: 10.1002/cnma.201500031

Biography
Hochschulstudium und Stipendien 1979-1984 Physik-Studium (Dipl.) an der Universität Göttingen 1984-1987 Promotion am Max-Planck-Institut (MPI) für Strömungsforschung, Göttingen unter Anleitung von J. Peter Toennies Stipendien während des Studiums und der Promotion: 1982-1987 Stipendium Studienstiftung des Deutschen Volkes Berufliche Laufbahn 1988-1989 Postdoktorat, IBM-Forschungslaboratorien in San José, USA 1989-1992 wissenschaftlicher Mitarbeiter am Lehrstuhl für Angewandte Physikalische Chemie in Heidelberg 1992 Habilitation an der Fakultät für Physik und Astronomie der Universität Heidelberg 1992-1993 Hochschuldozent (C2) am Lehrstuhl für Angewandte Physikalische Chemie der Universität Heidelberg 1994 Umhabilitation von Heidelberg an die Fakultät für Physik der Georg-August-Universität Göttingen 1997-2009 Hochschulprofessor (C4), Lehrstuhl für Physikalische Chemie I der Ruhr-Universität Bochum 2001 Visiting Professor am Materials Research Laboratory der University of Illinois at Urbana-Champaign, USA 2006-2007 Visiting Professor am Materials Science Laboratory an der Nagoya University, Japan 2009- Direktor des Instituts für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT, Campus Nord) Funktionen 2000-2009 Sprecher des DFG-Sonderforschungsbereichs (SFB) 558 ***Metall-Substrat-Wechselwirkungen in der Heterogenen Katalyse" 2001-2007 Koordinator des DFG-Schwerpunktprogramms 1121 ***Organische Feldeffekttransistoren" (OFET) 2004-2007 Sprecher des Transferbereichs des SFB 558 ***CVD-Präparation von Cu/Zn/Al-Trägerkatalysatoren für die Methanolsynthese" 2006-2009 Koordinator des EU-STREP-Projektes ***Anchoring of metal-organic Frameworks, MOFs, to surfaces" (SURMOF, FP6) 2009- Mitglied des Senats des KIT 2011- Sprecher des Helmholtz-Programms BioInterfaces Stipendien/Auszeichnungen 1988 Otto-Hahn-Medaille der Max-Planck-Gesellschaft für die im Rahmen der Promotion erfolgten Arbeiten ***zur Demonstration der Anwendungsmöglichkeiten der Helium-Atomstrahlmethode auf Oberflächenuntersuchungen" 1994-1996 Heisenbergstipendiat der Deutschen Forschungsgemeinschaft (DFG), Tätigkeit in Heidelberg und Göttingen (MPI für Strömungsforschung) 2013- Mitglied der Deutschen Akademie der Naturforscher Leopoldina Mitgliedschaften Herausgebergremien wissenschaftlicher Zeitschriften und Monographienserien - Editorial Board Surface Review and Letters - Editorial Board Progress in Surface Science Wissenschaftliche Gesellschaften - Gesellschaft Deutscher Chemiker - Deutsche Physikalische Gesellschaft - Deutsche Bunsengesellschaft für physikalische Chemie Gutachtertätigkeiten - Gutachter der DFG, Studienstiftung des dt. Volkes, u.a. - der NSF, des DOE (USA) - Gutachter für den FWF (Österreich), den EPSRC (GB), die Israel Science Foundation, u.a. - Gutachter im Zusammenhang mit Beförderungen und Berufungen an deutschen, europäischen und nordamerikanischen Universitäten Forschungsaktivitäten Photoelektronenspektroskopie (XPS, UPS) sowie Absorptionsspektroskopie im weichen Röntgenbereich (NEXAFS) an dünnen organischen Filmen und Adsorbatschichten auf Metallen, Halbleitern und Isolatoren, Messungen am Synchrotron BESSY in Berlin; Herstellung, strukturelle und chemische Charakterisierung von ultradünnen organischen Filmen (Langmuir-Blodgett, selbstorganisierende Filme aus Alkanthiolen und Alkylsilanen) auf metallischen (Au,Cu) und oxidischen (Si) Substraten, Infrarotspektroskopie an organischen Dünnstschichten auf metallischen und oxidischen Substraten, Flüssigphasenepitaxie von metallorganischen Gerüstverbindungen (MOFs bzw. SURMOFs) auf organischen Oberflächen, Beladen der epitaktischen Schichten mit Gastmolekülen Publikationsaktivitäten Ca. 400 Veröffentlichungen, 2 Patente, 1 Buch (Herausgeber)

14:15 GaN
  M. Germain, EpiGaN
14:40 Emerging 2D materials for the Internet of things
  Georg Duesberg, Trinity College Dublin
15:05
Monolayer controlled deposition of 2D transition metal dichalcogenides on large area substrates
  Annelies Delabie, Professor, Imec
Monolayer controlled deposition of 2D transition metal dichalcogenides on large area substrates
Annelies Delabie

Annelies Delabie
Professor
Imec

Abstract
Two-dimensional (2D) transition metal dichalcogenides (MX2, with M a transition metal of group 4 - 7 and X a chalcogen) have versatile properties that complement those of graphene. Depending on the metal and chalcogen, these 2D materials exhibit insulating, metallic, semi-metallic or semiconducting properties. The anisotropy in their electrical, chemical, mechanical and thermal properties is of interest for applications ranging from nano-electronics to sensing and photonics. MoS2, MoSe2, WS2, and WSe2 are 2D semiconductors that attract significant interest for ultra-scaled nano-electronic devices because of their large band gap values, low dielectric constants, lack of dangling bonds and structural stability. In contrast to graphene, the presence of a band gap in MX2 allows fabrication of transistors with high Ion/Ioff ratio. Further exploiting the potential of MX2 and enabling integration in nano-electronic devices requires the development of deposition techniques for MX2 that provide monolayer growth control on large area substrates. Next to Chemical Vapor Deposition (CVD), Atomic Layer Deposition (ALD) is a promising technique because its deposition principle ensures growth control at the atomic level on large area substrates. We will discuss the CVD and ALD of WS2 from the WF6 and H2S precursors. The deposition of WS2 on Al2O3 substrates is enabled at low temperature (300-450ºC) by either Si layers or H2 plasma as reducing agents. The 2D structure of thin WS2 layers (2-3 monolayers) is obtained at low deposition temperature without using a template or anneal, as indicated by Raman Spectroscopy and Transmission Electron Microscopy. Nevertheless, the layers are polycrystalline with a rather small grain size. The orientation of the WS2 basal planes is parallel to the substrate at 300ºC and depends on temperature. We will discuss the need for a better understanding of the nucleation and growth mechanisms, as this will enable improvement of the crystallinity.

Biography
Annelies Delabie obtained a master degree in chemistry in 1997 and a PhD degree in science in 2001 from the University of Leuven (KULeuven) in Belgium. In 2001, she joined imec, research institute for nano-electronics and nanotechnology in Belgium. As a senior scientist, she investigates the fundamentals and applications of thin films and their deposition techniques, with a focus on Atomic Layer Deposition (ALD). Since 2012, she is also appointed associate professor at the chemistry department of the KU Leuven, where she started the research group "Nano-engineered Thin Films". She is a member of the American Vacuum Society (AVS) ALD conference committee and the ALD applications symposium of the Electrochemical Society. She is (co-) author of 9 patents and more than 160 scientific publications in peer reviewed journals, with an h-factor of 30.

15:30
Selective Deposition as Enabler for Shrinking Device Dimensions
  Suvi Haukka, Executive Scientist, ASM Microchemistry Ltd.
Selective Deposition as Enabler for Shrinking Device Dimensions
Suvi Haukka

Suvi Haukka
Executive Scientist
ASM Microchemistry Ltd.

Abstract
The shrinking device dimensions in semiconductor manufacturing call for new innovative processing approaches. One of these considered is selective deposition which has gained increasing interest among semiconductor manufacturers today. Selective deposition would be highly beneficial in various ways, for instance, it would allow a decrease in lithography and etch steps reducing the cost of processing and enable enhanced scaling in narrow structures making bottom up fill possible. Chemical vapor deposition (CVD) and especially atomic layer deposition (ALD) as very surface sensitive techniques are considered enabling techniques. In most of the selective deposition schemes of today a passivation is used for the surface on which no deposition is desired. The most known method is to use SAM´s (self-assembled monolayers) which are silicon compounds with long carbon chains. Depending on the type of SAM one can passivate either the metal oxide, metal or silicon surface. Thus, the use of SAM allows for instance a metal layer be selectively deposited on metal surface over dielectric surface. Furthermore, it has been shown that without SAM a dielectric layer can selectively be deposited on hydrophilic polymer over a more hydrophobic polymer. In this paper, the various selective deposition approaches and passivation means are reviewed. In addition, results from the selective deposition of metal on metal over dielectric surface in a Cu capping application and from selective strengthening of DSA (direct self-assembly) layers are presented.

Biography
Dr. Suvi Haukka is currently employed as an Executive Scientist for ALD applications for ASM International, and she is based in Helsinki, Finland where the R&D site of ASM, ASM Microchemistry is located. For over twenty years she has worked in various capacities, including Research Scientist, Catalyst Technology Manager, Process Development Manager and R&D Manager, which all have been related to atomic layer deposition (ALD). In particular, her work has focused on ALD and applications of it for semiconductor equipment, processes, and devices as well as development of ALD apparatus. Over the course of her career, she has been an author on over 70 scientific papers, primarily concerning ALD processes, applications and apparatus. In addition, she is an inventor of more than 100 ALD patents and patent applications in the field of semiconductor fabrication. In 1994 Suvi Haukka earned a Doctor of Philosophy degree from the Laboratory of Analytical Chemistry, University of Helsinki, Finland.

15:55
Next Generation Ferroelectric Field Effect Transistors enabled by Ferroelectric Hafnium Oxide
  Thomas Mikolajick, scientific director, NaMLab Gmbh / TU Dresden
Next Generation Ferroelectric Field Effect Transistors enabled by Ferroelectric Hafnium Oxide
Thomas Mikolajick

Thomas Mikolajick
scientific director
NaMLab Gmbh / TU Dresden

Abstract
Ferroelectrics are very interesting for nonvolatile memories. The progress is limited by the low compatibility of ferroelectrics like PZT with CMOS processing. Therefore 1T/1C ferroelectric memories are not scaling below 130 nm and 1T ferroelectric FETs are still struggling with low retention and very thick memory stacks. Hafnium oxide, a standard material in sub 45nm CMOS, can show ferroelectric hysteresis with promising characteristics. By adding a few percent of silicon and annealing the films in a mechanically confined manner Boescke et al. demonstrated ferroelectric hysteresis in hafnium oxide for the first time. Recently a large number of dopants including Y, Al, Gd and Sr have been used to induce ferroelectricity in HfO2. In the first part of this talk the different doping elements that have been shown to enable ferroelectricity will be compared and general trends will be established. The second part will focus on the memory relevant characterization data. Finally the application in 1T FETs will be demonstrated and the potential to solve principal issues of ferroelectric FETs will be illustrated.

Biography
Thomas Mikolajick received the Diploma (Dipl.-Ing.) in electrical engineering from the University Erlangen-Nuremberg in 1990 and his phD in electrical engineering in 1996. From 1996 till 2006 he was in the semiconductor industry developing CMOS processes,ferroelectric memories, emerging non-volatile memories and Flash memories first at Siemens Semiconcuctor and later at Infineon. In late 2006 he moved back to academia taking over a professorship for material science of electron devices and sensors at the University of Technology Freiberg, and in October 2009 he started at Technische Universität Dresden were he now holds a professorship for nanoelectronic materials in combination with the position of scientific director at NaMLab GmbH. Since April 2010 he is the coordinator of the "Cool Silicon" Cluster in Dresden. Prof. Mikolajick is author or co-author of about 220 Publications in scientific journals or at scientific conferences and inventor or co-inventor of about 50 patents.

16:20 Spintronics for MRAM at HZDR
  Alina Maria Deac, Helmholtz-Zentrum
16:55 Closing Remarks